BEMA 56A Graph Theory

Dr S. Srinivasan

Assistant Professor, Department of Mathematics, Periyar Arts College, Cuddalore - 1, Tamil nadu

Email: smrail@gmail.com
Cell: 7010939424
2.1. The adjacency and incidence of matrices
2.2. Operations on Graphs
2.3. Intersection graphs
2.4 Line Graphs

2.1. The adjacency and incidence of matrices

Definition 1.

Let $G=(V, E)$ be a (p, q) graph .
Denote the vertices of G by $v_{1}, v_{2}, \ldots, v_{p}$.
The adjacency matrix of G is the matrix $A(G)=\left(a_{i j}\right)$,
is a $p \times p$ matrix, in which

$$
a_{i j}= \begin{cases}1, & \text { if } v_{i} \text { and } v_{j} \text { are adjacent } \\ 0, & \text { otherwise }\end{cases}
$$

Example 1

Example 2

Example 3

Properties

1. For a simple graph $G, a_{i j} \in\{0,1\}$, and hence $A(G)$ is a $(0,1)$ matrix.
2. For $i \neq j, v_{i}$ is adjacent to $v_{j} \Leftrightarrow v_{j}$ is adjacent to v_{i},

$$
\text { i.e., } a_{i j}=a_{j i} .
$$

Hence $A(G)=A(G)^{T} . \quad\left(A(G)^{T}\right.$ - is the transpose of $\left.A(G).\right)$
Thus $A(G)$ is symmetry.
3. The sum of the $i^{t h}$ row of A is equal to the degree of v_{i}

Incidence matrix

Definition 2.

Let $G=(V, E)$ be a (p, q) graph.
Denote $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{q}\right\}$.
The incidence matrix of G is the matrix $B(G)=\left(b_{i j}\right)$,
is a $\quad p \times q$ matrix, in which

$$
b_{i j}= \begin{cases}1, & \text { if } v_{i} \text { is incident with } e_{j} \\ 0, & \text { otherwise }\end{cases}
$$

Example 1

Example 2

Example 3

Figure 6.5.4 Graph and its incidence matrix

Properties

1. For a simple graph $G, m_{i j} \in\{0,1\}$, and hence $B(G)$ is a $(0,1)$ matrix.
2. The sum of the $i^{t h}$ row of A is equal to the degree of v_{i}.
3. Each column sum is 2 .
(since each edge contribute 2 to the degree sum)

2.2. Operations on Graphs

Definition 3.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graph with $V_{1} \cap V_{2}=\phi$.
Define the union $G_{1} \cup G_{2}$ by $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$.

Example 1

Example 2

Example 3

Sum of Graphs

Definition 4.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graph with $V_{1} \cap V_{2}=\phi$.
Define the sum $G_{1}+G_{2}$ by $G_{1} \cup G_{2}$ together with
all the edges joining vertices of V_{1} to vertices of V_{2}.

Example 1

Product of Graphs

Definition 5.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graph with $V_{1} \cap V_{2}=\phi$.
Define the product $G_{1} \times G_{2}$ by its vertex set $V=V_{1} \times V_{2}$ and two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$
\Longleftrightarrow
$u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} in G_{2} or
u_{1} is adjacent to v_{1} in G_{1} and $u_{2}=v_{2}$.

Example 1

Example 2

Example 3

Composition of Graphs

Definition 6.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graph with $V_{1} \cap V_{2}=\phi$.
Define the composition $G_{1}\left[G_{2}\right]$ by its vertex set $V=V_{1} \times V_{2}$ and two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1}\left[G_{2}\right]$ if, and only if, u_{1} adjacent to v_{1} in G_{1} or $u_{1}=v_{1}$ and u_{2} adjacent to v_{2} in G_{2}.

Example 1

Theorem 2.1.

Let $G_{1}=\left(p_{1}, q_{1}\right)$ and $G_{2}=\left(p_{2}, q_{2}\right)$ be two graphs. Then
(i) $G_{1} \cup G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}\right)$ graph
(ii) $G_{1}+G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}+p_{1} p_{2}\right)$ graph
(iii) $G_{1} \times G_{2}$ is a $\left(p_{1} p_{2}, q_{1} p_{2}+q_{2} p_{1}\right)$ graph
(iv) $G_{1}\left[G_{2}\right]$ is a $\left(p_{1} p_{2}, p_{1} q_{2}+p_{2}^{2} q_{1}\right)$ graph

Proof.

Given $G_{1}=\left(p_{1}, q_{1}\right)$ and $G_{2}=\left(p_{2}, q_{2}\right)$ be the two graphs.
(i) $G_{1} \cup G_{2}$:

By def, the number of vertices in $G_{1} \cup G_{2}$ is
$=$ the number of vertices in $G_{1}+$ the number of vertices in G_{2}
$=p_{1}+p_{2}$.

The number of edges in $G_{1} \cup G_{2}$ is
$=$ the number of edges in $G_{1}+$ the number of edges in G_{2}
$=q_{1}+q_{2}$.
Thus, $G_{1} \cup G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}\right)$ graph.
(ii) $G_{1}+G_{2}$:

By def, the number of vertices in $G_{1}+G_{2}$ is
$=$ the number of vertices in $G_{1}+$ the number of vertices in G_{2}
The number of edges in $G_{1}+G_{2}$ is
$=$ the number of edges in $G_{1}+$ the number of edges in G_{2}

+ the number of edges joining vertices of G_{1} to vertices of G_{2}
$=q_{1}+q_{2}+p_{1} p_{2}$
Thus, $G_{1}+G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}+p_{1} p_{2}\right)$ graph.
(iii) $G_{1} \times G_{2}$:

By def, the number of vertices in $G_{1} \times G_{2}$ is
$=$ the number of vertices in $G_{1} \times$ the number of vertices in G_{2}
$=p_{1} p_{2}$

By def, two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$
\Leftrightarrow either $u_{1}=u_{2}$ and v_{1} is adjacent to v_{2} in G_{2} or
u_{1} is adjacent to u_{2} in G_{1} and $v_{1}=v_{2}$.
$\Rightarrow \operatorname{deg}\left(u_{i}, v_{j}\right)=\operatorname{deg}\left(u_{i}\right)+\operatorname{deg}\left(v_{j}\right)$ for every i and j.
The total number of edges in $G_{1} \times G_{2}$ is

$$
\begin{aligned}
& =\frac{1}{2}\left(\sum_{i, j} \operatorname{deg}\left(u_{i}\right)+\operatorname{deg}\left(v_{j}\right)\right) \\
& =\frac{1}{2}\left[\sum_{i=1}^{p_{1}} \sum_{j=1}^{p_{2}}\left(\operatorname{deg}\left(u_{i}\right)+\operatorname{deg}\left(v_{j}\right)\right)\right] \\
& =\frac{1}{2}\left[\sum_{i=1}^{p_{1}}\left(\sum_{j=1}^{p_{2}} \operatorname{deg}\left(u_{i}\right)+\sum_{j=1}^{p_{2}} \operatorname{deg}\left(v_{j}\right)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\sum_{i=1}^{p_{1}}\left(p_{2} \operatorname{deg}\left(u_{i}\right)+2 q_{2}\right)\right] \\
& =\frac{1}{2}\left[\sum_{i=1}^{p_{1}} p_{2} \operatorname{deg}\left(u_{i}\right)+\sum_{i=1}^{p_{1}} 2 q_{2}\right] \\
& =\frac{1}{2}\left[p_{2} 2 q_{1}+p_{1} 2 q_{2}\right] \\
& =p_{2} q_{1}+p_{1} q_{2}
\end{aligned}
$$

Thus, $G_{1} \times G_{2}$ is a $\left(p_{1} p_{2}, q_{1} p_{2}+q_{2} p_{1}\right)$ graph.
(iv) $G_{1}\left[G_{2}\right]$:

By def, the number of vertices in $G_{1}\left[G_{2}\right]$ is
$=$ the number of vertices in $G_{1} \times$ the number of vertices in G_{2}
$=p_{1} p_{2}$

By def, two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1}\left[G_{2}\right]$
$\Leftrightarrow u_{1}$ is adjacent to v_{1} in G_{1} or either $u_{1}=v_{1}$ and
u_{2} is adjacent to v_{2} in G_{2}
$\Rightarrow \operatorname{deg}\left(u_{i}, u_{j}\right)=p_{2} \operatorname{deg}\left(u_{i}\right)+\operatorname{deg}\left(u_{j}\right)$ for every i and j.
The total number of edges in $G_{1}\left[G_{2}\right]$ is

$$
=\frac{1}{2}\left(\sum_{i, j} p_{2} \operatorname{deg}\left(u_{i}\right)+\operatorname{deg}\left(v_{j}\right)\right)
$$

$$
=\frac{1}{2}\left[\sum_{i=1}^{p_{1}} \sum_{j=1}^{p_{2}}\left(p_{2} \operatorname{deg}\left(u_{i}\right)+\operatorname{deg}\left(v_{j}\right)\right)\right]
$$

$$
=\frac{1}{2}\left[\sum_{i=1}^{p_{1}}\left(\sum_{j=1}^{p_{2}} p_{2} \operatorname{deg}\left(u_{i}\right)+\sum_{j=1}^{p_{2}} \operatorname{deg}\left(v_{j}\right)\right)\right]
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\sum_{i=1}^{p_{1}}\left(p_{2}^{2} \operatorname{deg}\left(u_{i}\right)+2 q_{2}\right)\right] \\
& =\frac{1}{2}\left(\sum_{i=1}^{p_{1}} p_{2}^{2} \operatorname{deg}\left(u_{i}\right)+\sum_{i=1}^{p_{1}} 2 q_{2}\right) \\
& =\frac{1}{2}\left(p_{2}^{2} 2 q_{1}+p_{1} 2 q_{2}\right) \\
& =p_{2}^{2} q_{1}+p_{1} q_{2}
\end{aligned}
$$

Thus, $G_{1}\left[G_{2}\right]$ is a $\left(p_{1} p_{2}, q_{1} p_{2}^{2}+q_{2} p_{1}\right)$ graph.

2.3 Intersection graphs

Definition 7.

Let S be a non-empty set.
Let $\mathcal{F}=\left\{S_{1}, S_{2}, \ldots, S_{p}\right\}$ be a family of distinct non-empty subsets of S.
The intersection graph of \mathcal{F} is denoted by $\Omega(\mathcal{F})$.

The vertex set of $\Omega(\mathcal{F})$ is \mathcal{F} itself.
Two vertices $S_{i}, S_{j}(i \neq j)$ are adjacent if $S_{i} \cap S_{j} \neq \phi$

Definition 8.

A graph G is called an intersection graph on S if there exists a family \mathcal{F} of subsets of S such that G is isomorphic to $\Omega(\mathcal{F})$

Theorem 2.2.

Every graph is an intersection graph.

Proof:

Let $G=(V, E)$ graph.

Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\}$.

Take $S=V \cup E$.

For each $v_{i} \in V$.

Let $S_{i}=\left\{v_{i}\right\} \cup\left\{e \in E \mid v_{i} \in e\right\}$.

Clearly, $\mathcal{F}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{p}\right\}$ is a family of distinct non-empty subsets of S.

Further v_{i}, v_{j} are adjacent in G then $v_{i} v_{j} \in S_{i} \cap S_{j}$

$$
\Longrightarrow \quad S_{i} \cap S_{j} \neq \phi
$$

Conversely, suppose $\mathcal{F}=\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{p}\right\}$ is a family of distinct non-empty subsets of S.

If $S_{i} \cap S_{j} \neq \phi$.
Then there is an element common to $S_{i} \cap S_{j}$ is the edge joining v_{i} to v_{j}.
So that v_{i}, v_{j} are adjacent in G.
$\therefore f: V \longrightarrow \mathcal{F}$ is defined by $f\left(v_{i}\right)=S_{i}$.
Clearly, f is an isomorphism of G to $\Omega(\mathcal{F})$.
Hence G is an intersection graph.

2.4 Line Graphs

Definition 9.

Let $G=(V, E)$ be a graph with $E \neq \phi$.
Then the line graph of G is denoted by $L(G)$.
The vertices of $L(G)$ are the edges of G and
two vertices in $L(G)$ are adjacent if and only if the corresponding edges are adjacent in G.

Example 1

Example 2

Draw the line graph $L(G)$ for the following.

Theorem 2.3.

Let $G=(p, q)$ graph.
Then $L(G)$ is a $\left(q, q_{L}\right)$ graph where

$$
q_{L}=\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}^{2}\right)-q .
$$

Proof.

By def, the number of vertices in $L(G)$ is q.
Choose $v_{i} \in V(G)$.

Then $d\left(v_{i}\right)=d_{i}$. (say)
i.e., d_{i} edges incident with v_{i} in G.
i.e., these d_{i} edges are adjacent in $L(G)$.

Hence we get $\frac{d_{i}\left(d_{i}-1\right)}{2}$ edges in $L(G)$.
Hence

$$
\begin{gathered}
q_{L}=\sum_{i=1}^{p} \frac{d_{i}\left(d_{i}-1\right)}{2} \\
q_{L}=\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}^{2}\right)-\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}\right)
\end{gathered}
$$

By Euler's theorem,

$$
\begin{gathered}
\sum_{i=1}^{p} d_{i}=2 q \\
\therefore q_{L}=\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}^{2}\right)-\frac{1}{2}(2 q) \\
q_{L}=\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}^{2}\right)-q
\end{gathered}
$$

